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Abstract

Chaos and chaos synchronization of the horizontal platform system are studied in this paper. Because of
the non-linear terms of the systems, the systems exhibit both regular and chaotic motions. By applying
various numerical results, such as phase portraits, Poincar!e maps, time history and power spectrum
analysis, the behaviors of the periodic and chaos synchronization are presented. The effects of the change of
parameters in the system can be found in the bifurcation diagrams. Chaos synchronization of feedback
methods in two coupled systems has been studied by Lyapunov exponent and coupling strength. Besides,
phase effect of external excitations and the transient time in unidirectional synchronization also have been
researched.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Chaos synchronization has increasing potential of applications. In conventional communica-
tion systems, sinusoidal signals are used as carriers, which normally offer excellent bandwidth
efficiency. However, their transmitted power is concentrated within a narrow band, resulting in
high power spectra density. Then it may lead to loss of synchronization, high interception
possibilities, etc. On the contrary, chaotic signals are usually broadband and noiselike. Hence,
synchronized chaotic systems can be used as cipher generators for secure communication [1],
symmetry and pattern formation, and self-organization [2].

There are many effective methods that can be used for chaos synchronization. It is achieved by
adding a single coupled term or two coupling terms, and detected by Lyapunov exponent. In this
paper, synchronization of feedback method in two identical non-autonomous coupled systems has
been studied. Then the phase effect of two coupled systems [3] and the transient time in
unidirectional synchronization also have been researched.
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2. Equations of the system

The system considered here is depicted in Fig. 1(a)–(b). The platform can freely rotate about the
horizontal axis, which penetrates its mass center. There is an accelerometer on the platform. When
the platform derivates from horizon, the accelerometer will give an output signal to the torque
generator, which generates a torque to inverse the rotation of the platform about rotational axis.
The equation of the system is

A .x þ D ’x þ kg sin x �
3g

R
ðB � CÞcos x sin x ¼ F cosot; ð1Þ

where A; B and C are the inertia moment of the platform for axis 1, 2, and 3, respectively, D is the
damping coefficient, k the proportional constant of the accelerometer, g the acceleration constant
of gravity, x the rotation of the platform relative to the earth, a� y and F cosot harmonic
torque. The analytical analysis of this system can be seen in Ref. [4].
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Fig. 1. (a) Physical model of the horizontal platform and (b) model of the platform circles along earth.
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3. Chaos synchronization

Synchrony is the simplest effect of coupled identical oscillators: two identical oscillators display
the same dynamical pattern in their common phase space. When two identical oscillators are
coupled, there are only two possibilities, synchrony with no phase difference and antisynchrony
with a phase difference of one-half [5].

From Eq. (1) the coupled system can be written as follows:

’x1 ¼ x2;

’x2 ¼ �
D

A
x2 �

kg

A
sin x1 þ

3g

RA
ðB � CÞcos x1 sin x1 þ

F

A
cosot þ F ðx3; x1Þ;

8<
: ð2Þ

’x3 ¼ x4;

’x4 ¼ �
D

A
x4 �

kg

A
sin x3 þ

3g

RA
ðB � CÞcos x3 sin x3 þ

F

A
cosot þ F ðx1; x3Þ;

8<
: ð3Þ

where Fðx3;x1Þ and Fðx1;x3Þ are coupling terms. System (2) is drive system, and system (3) is
response system. These two systems are identical systems but have different initial condition.

When the oscillatory time response of two coupled chaotic oscillators are within the phase-
locking range, their time response will be automatically locked to a mutual value; consequently,
both systems oscillate with the same time response. In this case, they are synchronized. Various
coupling terms cannot produce synchronization. Five kinds system synchronization are found
with different coupling terms.

The first three driven subsystems are unidirectoional synchronization. The fourth driven
subsystem is bi-directional synchronization. First, when F ðx3; x1Þ ¼ 0;F ðx1; x3Þ ¼ kðx1 � x3Þ
where k is coupling strength, the results are shown in Figs. 2 and 3 for the phase portrait, time-
response error and drive-response diagram. Fig. 4 is Lyapunov exponent for the first driven
subsystem, and Fig. 5 is synchronization time of k: In Fig. 4, when k ¼ 1:2 one of the Lyapunov
exponents transverse the zero value from positive to negative. This indicates that the
transversality means synchronization. In Fig. 5, when k is larger than 1.2, the synchronization
time is quickly reduced. The result of Fig. 6 shows that there is no synchronization in the first
driven subsystem. This result means that the critical value of coupling strength k is between 1.1
and 1.2. When k is larger than critical value, synchronization would be achieved. Figs. 7–9 show
the results of the second driven subsystem, in which Fðx3;x1Þ ¼ 0 and F ðx1; x3Þ ¼ k sinðx1 � x3Þ:
Fðx3;x1Þ ¼ 0 and F ðx1; x3Þ ¼ kðeðx1�x3Þ � 1Þ are in the third driven subsystem. The results of the
third driven subsystem are shown in Figs. 10–12. The results of the subsystems above are similar.

The bi-directional coupled system synchronization would be discussed in this section. The first
bi-directional coupled system’s coupling terms are F ðx3; x1Þ ¼ k½eðx3�x1Þ � 1� and F ðx1;x3Þ ¼
k½eðx1�x3Þ � 1�: The numerical simulation results of this system are shown in Figs. 13–17. From
Figs. 13, 14 and 16, we can see that when k is larger than 0.6, the system is synchronized. In
Fig. 17, the transversality of Lyapunov exponent happened when k ¼ 0:05: But this system does
not synchronize when k ¼ 0:05 (Fig. 15). This phenomenon differs from the systems shown above.

Then the coupling terms of the second bi-directional coupled system are Fðx3;x1Þ ¼
k sin½eðx3�x1Þ � 1� and F ðx1;x3Þ ¼ k sin½eðx1�x3Þ � 1�; and the results are shown in Figs. 18–20.
When k is larger than 0.6, the system is synchronized.
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But in Fig. 20, the point k ¼ 0:7 is an exceptional point, because its synchronization time is
much larger than the other points nearby. So, the fourth coupled system could not be
synchronized when k ¼ 0:7 (See Fig. 21).

4. Phase effect of two external excitations for two coupled systems

The phase difference between external excitation may affect chaos synchronization [3]. For
large difference, it even transforms the coupled oscillators from chaotic motion to regular motion.

When adding phase difference in the response system, system (3) would become

’x3 ¼ x4;

’x4 ¼ �
D

A
x4 �

kg

A
sin x3 þ

3g

RA
ðB � CÞcos x3 sin x3 þ

F

A
cosðot þ jÞ

þ Fðx1;x3Þ; ð4Þ

where j is phase difference of external excitation, 0pjp2p: Now we take linear coupling term
Fðx1;x3Þ ¼ kðx1 � x3Þ for an example. In what follows, we fix o ¼ 1:8 and the coupling strength
k ¼ 50: The bifurcation diagrams of systems (2) and (4) are shown in Figs. 22 and 23. Fig. 24 is
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Fig. 2. Phase portraits, errors and similarity of unidirectional coupled systems with kðx1 � x3Þ; k ¼ 1:2:
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Fig. 3. Phase portraits, errors and similarity of unidirectional coupled systems with kðx1 � x3Þ; k ¼ 1:6:
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Fig. 4. Lyapunov exponent for k between 0 and 2.
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Fig. 6. Phase portraits, errors and similarity of unidirectional coupled systems with kðx1 � x3Þ; k ¼ 1:1:

Fig. 5. Synchronization time for different k.
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Fig. 7. Phase portraits, errors and similarity of unidirectional coupled systems with k sinðx1 � x3Þ; k ¼ 1:3:
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Fig. 8. Lyapunov exponent for k between 0 and 2.
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the Lyapunov exponent spectra corresponding to Figs. 22 and 23. It indicates that at jE1 and
E1.3, the chaotic oscillation turns out to be periodic.

To determinate quantitatively the level of mismatch of chaos synchronization, we use similarity
function SðtÞ as a time averaged difference between the variables x1 and x3 taken with the time
drift t [6]

S2ðtÞ ¼
f½x1ðt þ tÞ � x3ðtÞ�2g

x2
1ðtÞ

� �
x2
3ðtÞ

� �� �1=2 ð5Þ

and plot the similarity function Sð0Þ versus j; the result is plotted in Fig. 25. The increase of
mismatch with the phase difference is linear for small j:

In Fig. 26, we plot SðtÞ versus t with different coupling strength k: A minimum of SðtÞ appears
to be zero when k > 1:2:

Above all, we have considered the phase effect of the two mutually coupled systems. The phase
difference plays an important role. Therefore, further increase of the phase difference even
eliminates chaos and leads the coupled oscillators to periodic motion.

5. Transient time in unidirectional synchronization

In order to illustrate some observed characteristics in chaos synchronization, we take the linear
coupled unidirectional systems ðFðx3;x1Þ ¼ 0; Fðx1;x3Þ ¼ kðx1 � x3ÞÞ for example. Our interest is
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Fig. 9. Synchronization time for different k.
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Fig. 10. Phase portraits, errors and similarity of unidirectional coupled systems with kðeðx1�x3Þ � 1Þ; k ¼ 1:2:
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Fig. 11. Lyapunov exponent for k between 0 and 2.
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Fig. 12. Synchronization time for different k.

Fig. 13. Phase portraits, errors and similarity of bi-directional coupled systems with F ðx3; x1Þ ¼ k½eðx3�x1Þ � 1�;
F ðx1; x3Þ ¼ k½eðx1�x3Þ � 1�; k ¼ 0:6:
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Fig. 14. Phase portraits, errors and similarity of bi-directional coupled systems with F ðx3; x1Þ ¼ k½eðx3�x1Þ � 1�;
F ðx1; x3Þ ¼ k½eðx1�x3Þ � 1�; k ¼ 0:7:
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Fig. 15. Lyapunov exponent for k between 0 and 1.5.
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Fig. 16. Synchronization time for different k.

Fig. 17. Phase portraits, errors and similarity of bi-directional coupled systems with F ðx3; x1Þ ¼ k½eðx3�x1Þ � 1�;
F ðx1; x3Þ ¼ k½eðx1�x3Þ � 1�; k ¼ 0:05:
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Fig. 18. Phase portraits, errors and similarity of bi-directional coupled systems with Fðx3;x1Þ ¼ k sin½eðx3�x1Þ � 1�;
F ðx1; x3Þ ¼ k sin½eðx1�x3Þ � 1�; k ¼ 0:6:
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Fig. 19. Lyapunov exponent for k between 0 and 1.5.
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Fig. 21. Phase portraits, errors and similarity of bi-directional coupled systems with Fðx3;x1Þ ¼ k sin½eðx3�x1Þ � 1�;
F ðx1; x3Þ ¼ k sin½eðx1�x3Þ � 1�; k ¼ 0:7:

Fig. 20. Synchronization time for different k.
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Fig. 22. Bifurcation diagram for j between 0 and 2p versus x1:

Fig. 23. Bifurcation diagram for j between 0 and 2p versus error.
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focused on the behavior of the system when it is in chaotic state with values of the coupling
parameter which lead to synchronization, and in the time of transient decay onto the
synchronized state.

ARTICLE IN PRESS

Fig. 25. Similarity function Sð0Þ versus the phase differencej:

Fig. 24. Lyapunov exponent for j between 0 to 2p:
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The Euclidean distance d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x3Þ

2 þ ðx2 � x4Þ
2

q
between two trajectories is monitored for

various choices of the coupling parameter k as shown in Fig. 27. Increasing the value of the
coupling parameter, we see that the transition to the synchronized state occurs at kcD1:4 for this
numerical simulation, after which systems (2) and (3) display the same output. For the value of k
greater than kc the synchronized state is stable. The length of transient time may depend on the
coupling parameter and on the initial conditions. In Fig. 28, we plot three typical curves
representing the full evolution of dðtÞ: The three curves are computed for identical initial
conditions. The evolution of dðt) when k ¼ 1:2 can be notionally split into two different parts. The
first evolution to is the orbiting transient, and the second part td is the decaying transient [7]. From
Fig. 28, we can see that as the value of k increases, the transient time decreases.

6. Conclusion

During the past decade, there are many effective methods that can be used for chaos
synchronization. Synchronized chaotic systems can be used as cipher generators for secure
communication, symmetry and pattern formation, and self-organization. It is worthy of
researching. Synchronization of subsystem is studied by employing a continuous feedback
method. Varying coupling strength, the motion of subsystems become to synchrony. Besides, we
can see how phase difference of external excitations affects the synchronization. Then we have
observed the transient time in synchronization, which helps us to understand more about
synchronization.

ARTICLE IN PRESS

Fig. 26. Similarity function SðtÞ for different values of coupling strength k:
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Fig. 28. Two curves representing the time evolution of Euclidean distance dðtÞ between the drive and the response

trajectories.

Fig. 27. Plot of several values of the Euclidean distance dðtÞ between the trajectories ðx1;x2; x3; x4Þ for different values

of k:
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